

AFRL-IF-RS-TR-2004-19
Final Technical Report
January 2004

COSAK: CODE SECURITY ANALYSIS KIT

Drexel University

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. M140

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2004-19 has been reviewed and is approved for publication.

APPROVED: /s/
 ELIZABETH S. KEAN
 Project Engineer

 FOR THE DIRECTOR: /s/
 JAMES W. CUSACK, Chief
 Information Systems Division
 Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
JANUARY 2004

3. REPORT TYPE AND DATES COVERED
FINAL Jun 00 – Dec 03

4. TITLE AND SUBTITLE

COSAK: CODE SECURITY ANALYSIS KIT

6. AUTHOR(S)

Spiros Mancoridis

5. FUNDING NUMBERS
G - F30602-01-2-0534
PE - 62301E
PR - CHAT
TA - 00
WU - 03

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Drexel University
Department of Computer Science, COE
3141 Chestnut Street
Philadelphia PA 19104

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency AFRL/IFSA
3701 North Fairfax Drive 525 Brooks Road
Arlington VA 22203-1714 Rome NY 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2004-19

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Elizabeth S. Kean/IFSA/(315) 330-2601 Elizabeth.Kean@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
There are two significant parts to the Code Security Analysis Kit (CoSAK) project. The first part of the project is called
Front Line Functions (FLF) and involves the development of static analysis tools for C code to assist in the
characterization of software functions that are most vulnerable to a security attack. The effectiveness of the FLF work
was demonstrated empirically using a repository of open source software with known security vulnerabilities. The
second part of the project is called Gemini and involves the development of tools to transform C programs into
equivalent ones that are less susceptible to a buffer overflow security attack. The effectiveness of the Gemini project
was demonstrated using a case study that involved transforming several software packages from the Linux operating
system distribution.

15. NUMBER OF PAGES14. SUBJECT TERMS
Code Security, Static Analysis, Security Vulnerability Analysis

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

17

 i

TABLE OF CONTENTS

Methods, Assumptions, and Procedures ………………………………………1

Results and Discussion…………………………………………………………1

Conclusions……………………………………………………………………11

Recommendations……………………………………………………………..11

References……………………………………………………………………..13

Glossary………………………………………………………………………..13

 1

Methods, Assumptions, and Procedures

The classic scientific method was used to develop the FLF tools. The data for
our experiment was compiled as a repository of 30 open source software
systems with known security vulnerabilities. Each software system in the
repository contains exactly one security flaw, which is documented as a source
code patch file. Since source code patches typically repair several bugs, it was
difficult to find patch files that repaired only one security flaw. The hypothesis
that we wanted to test was that security vulnerabilities typically involve
functions that perform input/output operations or are close to ones that perform
input/output operations. Examples of input/output operations include the
opening, reading, and writing of file or socket data.

Our hypothesis was shown to be true for all 30 software systems that were
in the repository. The next step was to develop a tool, called FLFfinder that can
automatically find all functions that either perform or are close to the functions
that perform input/output operations. The effectiveness of this tool was verified
on three open source software systems that have known vulnerabilities but were
not part of our experimental data.

A case study was used to validate the effectiveness of the Gemini tool.
Specifically, several open source software systems were transformed into
semantically equivalent program that were not as susceptible to buffer overflow
security attacks. After transforming the source code of each system we verified
that the system compiled and passed its regression test suite correctly. We also
designed examples of software with exploitable buffer overflow security
vulnerabilities and showed that the transformations performed by the Gemini
tool mitigated them.

Results and Discussion

FLF Finder Tool
A software vulnerability is a fault in the specification, implementation, or
configuration of a software system whose execution can violate an explicit or
implicit security policy. Software maintainers typically focus on the
functionality of software rather than on its security posture. Hence,
vulnerabilities often escape their attention until the software is exploited by
specially written malicious code.

A large percentage of software is developed using unsafe programming
languages (e.g., C and C++) in the name of cost effectiveness, programmer

 2

familiarity, and performance. Being unable to influence how others develop
new software, we must find ways to improve the maintenance process to secure
software against possible attacks.

Code audits are one aspect of the maintenance process that can expose
security vulnerabilities. Audits have been tried, with some success, on systems
such as the OpenBSD operating system. Unfortunately, audits are expensive and
reoccurring. Each audit requires many man-hours, and each software revision
requires re-examination to verify that new faults have not been introduced.

The quantity of code in many systems makes large-scale auditing infeasible.
In the case of OpenBSD, the auditing effort only focuses on software that is
enabled in the default installation. This decision has resulted in overlooked
vulnerabilities in often-used components of the distribution that have not been
audited, such as telnetd.

Beizer states that good source code will have one to three faults for every
one hundred lines of code. However, it is not known which of those faults is a
security fault. Auditors would benefit from a tool that can reduce the amount of
code that needs to be studied; enabling them to focus their attention on areas of
likely vulnerability.

Our hypothesis is that a small percentage of functions near a source of input
(e.g., file I/O) are the most likely to contain a security fault. We refer to these
functions as FLFs (Front Line Functions), and the percentage of functions likely
to contain a security fault as the FLF density. We validate our hypothesis with
an experiment that involves 31 open source systems using two tools that we
developed for this purpose.

Based on the validation of the hypothesis, the FLF Finder tool was
developed to identify areas of high vulnerability likelihood automatically. The
effectiveness of the FLF Finder is demonstrated in two ways. First, it is applied
to three open source software systems, micq, elm, and dhcpd, each with known
(documented) vulnerabilities. Second, the FLF Finder is applied to the
OpenSSH server daemon, which does not have known vulnerabilities but has
recently undergone a widely publicized restructuring, called privilege
separation. This separation aims at minimizing the amount of code that runs
with elevated privileges. By minimizing the amount of privileged code, it
reduced the risk of a security vulnerability occurring within that code. Although
the restructuring was done manually, our case study shows that the results
produced by the FLF Finder are consistent with the design decisions made by
the maintainers.

 For the purpose of the FLF experiment, we refer to the functions that
accept input as Inputs and the functions with known vulnerabilities as Targets.
An example of an Input is a user-defined function that contains a call to read,
defined in unistd.h. The function that invokes read stores data from a
possibly untrusted source in a buffer. Our analysis revealed that the most
common sources of input are user supplied input, input via command line
arguments, and input from environment variables.

 3

The FLF Finder supplies a list of common Inputs such as read. However,
any function could be a potential Input, so the user may specify what other
functions in the software system are considered Inputs.

A Target is any function that contains a known vulnerability. These
functions typically use a global buffer or a variable parameter that contains data
from an Input. For example, a Target could be a function that calls printf
using user-supplied input as the first argument. If nothing is known about the
software system then all functions in the system are Potential Targets.

All of the open source systems used in the experiment have at least one
known security fault and a patch file for repairing the vulnerability. Maintainers
using the Unix diff tool create the patch files. The experiment uses patch files to
identify the Targets in each system automatically.

The experiment uses two tools that we developed. The GNU Abstract
Syntax Tree Manipulation Program (GAST-MP) takes pre-processed C source
code and generates a database of code facts for each system in the experiment.
The System Graph Analyzer (SGA) discovers Targets in the source code and
creates the necessary function call graphs.

The GNU C++ Compiler (G++) can output the abstract syntax tree (AST) as
an ASCII text file when given the -fdump-tree-original flag. GAST-
MP parses this file and produces a relational database of code facts.

The SGA tool has a dual purpose. It functions as a vulnerability patch file
analyzer to identify Target functions and as a function call graph generator that
is used to trace how potentially dangerous data could flow from Inputs to
Targets.

For each vulnerability patch file, SGA determines the line number of each
subtractive line in the corresponding source code. It then uses the GAST-MP
database to find the function that contains that line of code. Once the function is
determined, it is marked as a Target.

Recall that the FLF hypothesis states that a small percentage of functions,
specifically those near a source of input, are most likely to contain a security
vulnerability. We will show that in 31 open source systems FLFs occur within
close proximity to an Input. The proximity is measured as the number of
function invocations that occur between the Input and Target.

The FLF density k represents the percentage of Potential Targets in a
software system that transmits data from an Input. Thus k can be computed via
the ratio p/m. p is the number of functions involved in a function invocation
path between an Input and Target; m represents the total number of Potential
Targets.

The validation of the FLF hypothesis consists of four stages. The first stage
is to search for software systems with known vulnerabilities and patch files for
those vulnerabilities. In general, it is difficult to find patch files that only
pertain to security vulnerabilities since maintainers often make one general
patch file that contains fixes for both regular faults and security vulnerabilities.
Fortunately, some Linux distributions provide software in the form of Source
Red Hat Package Manager (SRPM) files. SRPMs contain unaltered source code

 4

and a set of patches that address specific faults in the source. SRPM packages
comprise much of the test suite.

The second stage is to pre-process each software system in the test suite
with G++ to resolve macros and compile-time dependencies. GAST-MP is then
used to generate a database of code facts for each system.

Finally, SGA is used to calculate the FLF density of each system. The
process to calculate FLF density is detailed in our paper [ICSM03].

Our experiment computed the FLF density
for each system. The sample mean FLF density across all systems is 2.87%

with a standard deviation of 1.83. This means that, on average 2.87% of the
functions in each system were involved in the security vulnerability documented
by the patch files.

The FLF Finder discovers those functions in the code that are at high risk of
vulnerability. The tool is not intended to find faults, only to show which
functions are at risk. The FLF Finder requires two pieces of information to be
provided by the user. The first is the source code to be analyzed, and the second
is a list of Inputs (besides those provided by the FLF Finder.

The process the FLF Finder uses is the following algorithm:
1. Create the entire call graph G for the system.
2. Label Input nodes in G=(V,E) with a depth of 0.
3. Compute the total number of functions, m, in G.
4. Given the FLF density result of 2.87%, solve for p <- km
5. Label the nodes in G as follows:
• Perform a reverse (follow incoming edges) breadth first search (bfs)

from each 0-labeled node to depth p. During the reverse bfs, if a visited
node is not already labeled, label it with its depth (e.g., 1,2,3, …).

• For all labeled nodes u in set V, perform a bfs from its labeled depth
ending at depth p. All nodes visited are at high risk of vulnerability.

This process is identical to the process used to compute the FLF density

except that it might produce false positives. The false positives are introduced
because Targets are not known ahead of time. In the experiment, the resulting
FLF density was based on one path through one common ancestor. Since the
Targets are not known ahead of time when the FLF Finder is used, every
function invocation path of length p through every common ancestor is suspect.
Step 5 of the algorithm is responsible for finding all three invocation paths
discussed in previously.

To test the effectiveness of the FLF Finder, we applied it to three open
source systems, micq, elm, and dhcpd, with known vulnerabilities that were not
used in the experiment.

Only dhcpd failed to identify all of its known vulnerabilities. It failed to find
one vulnerability because there is no known path to the function in dhcpd which
contains the vulnerability.

One of our objectives was to supply the maintainer with a tool that eases the
process of performing a security audit. The FLF Finder accomplishes this by
eliminating most of the system's functions from consideration.

 5

We applied the FLF Finder to a software system with no known
vulnerabilities. In the previous section, patch files had been used to test
accuracy. In a system with no patch files we use the maintainers' design
decisions to evaluate the success of the FLF Finder.

OpenSSH is a free suite of network connectivity tools that a growing portion
of the Internet is relying on. Telnet, rlogin, ftp, and other such programs
transmit unencrypted password information during authentication. OpenSSH
encrypts all traffic (including passwords) to eliminate eavesdropping,
connection hijacking, and other network-level attacks. OpenSSH includes sshd,
a secure alternative to telnetd, and sftp, a secure alternative to ftp.

The principle behind privilege separation is to minimize the amount of code
that runs with elevated privileges without limiting the functionality of the
program. Privilege, in this context, refers to a “security attribute that is required
for certain operations”. The result of privilege separation is that the separated
code, which runs with elevated privileges, can now be audited thoroughly due to
its small size. After separation, the number of lines of sshd code that needed to
be audited was reduced from approximately 20,000 to 2,000.

In OpenSSH, privilege separation is implemented via a message passing
API. The API is used to transmit data between an unprivileged section and a
privileged section, and vice versa. The actual details of the message passing
scheme involve interprocess communication (IPC) and are beyond the scope of
this report.

The unprivileged code executes as a slave. A slave is an unprivileged user
that is sandboxed in a specific directory. Any attempts to exploit an application
(i.e., OpenSSH) should result in either a denial of service to the attacker or the
execution of arbitrary instructions as the slave.

 Privilege separation was originally an optional part of the OpenSSH
architecture. However, the OpenSSH team made it mandatory as of version
3.2.3.

The goal of the study is to demonstrate that the FLF concept and the FLF
Finder can be used to increase the efficiency of a source code auditor by
identifying functions that are at high-risk of containing a security fault.
Comparing the FLF Finder results of OpenSSH 3.1 against OpenSSH 3.2.3 will
do this. We will show that the functions identified by the FLF Finder
correspond to the functions modified by the maintainers in 3.2.3 while
implementing privilege separation. The process that we follow can be best
explained with set notation:
• F_3.1 - The set of functions found by the FLF Finder.
• P_3.2.3 – The set of functions that are involved in privilege separation.
• A_3.1 - The set of all functions in 3.1.
• C - The intersection of P_3.2.3 and F_3.1.
• S - The intersection of I and A_3.1.

We first run the FLF Finder on 3.1; this results in F_3.1. F_3.1 includes

34% (i.e., 374) of the functions in 3.1. the functions that are involved in
privilege separation.

 6

The set P_3.2.3 also contains functions that are not found in 3.1. The
functions in P_3.2.3 that are not in 3.1 must be removed in order to consider
only the functions in 3.1 that were changed in 3.2.3. The set C contains the
functions in 3.1 that were modified while implementing privilege separation in
3.2.3. The cardinality of C is 17. To verify the success of the study, we
intersect F_3.1 with C.

We found that of the 374 functions contained in F_3.1, the FLF Finder
identified 14 of the 17 functions involved in privilege separation, resulting in an
accuracy of 82%. Therefore, by reviewing 34% of OpenSSH, we were able to
identify 82% of the functions that were modified to increase OpenSSH's
security posture in 3.2.3.

This case study presents an example of how the FLF concepts and tools can
be used to aid code auditors in finding high-risk areas of code in an efficient
manner. We were able to remove at least 10,000 lines of code from
consideration with very little effort while maintaining a high degree of
accuracy. As our tools mature and our experimental set become larger we hope
that our ability to reduce the unimportant segments of a system (in terms of
security) will improve.

Gemini Tool

Buffer overflows are the most common source of security vulnerabilities in C
programs. This class of vulnerability, which is found in both legacy and modern
software, costs the software industry hundreds of millions of dollars per year.

The most common type of buffer overflow is the run-time stack overflow. It
is common because programmers often use stack allocated arrays. This enables
the attacker to change a program's control flow by writing beyond the boundary
of an array onto a return address on the run-time stack. If the arrays are
repositioned to the heap at compile time, none of these attacks succeed.
Furthermore, repositioning buffers to the heap should perturb the heap memory
enough to prevent many heap overflows as well.

We have created a tool called Gemini that repositions stack allocated arrays
at compile time using TXL. The transformation preserves the semantics of the
program with a small performance penalty. Our approach involves the
semantics-preserving transformation of stack allocated arrays to heap allocated
“pointers to arrays'”. A program that is amenable to a buffer overflow attack and
several Linux programs were used as examples to demonstrate the effectiveness
and overhead of our technique.

C is a widely used programming language for critical software (e.g.,
operating systems and system software). Most of the software that is bundled
with Linux and Sun Solaris are written in C. Furthermore; the most popular
servers on the Internet for e-mail, the World Wide Web, and the Domain Name
System are implemented in C.

 7

C programmers often use arrays to store data gathered from external input.
Stack allocated arrays are automatic variables; hence they are allocated and de-
allocated during run-time without programmer intervention. This is convenient
since the input is often used immediately (see previous discussion of FLFs).
Despite their convenience, stack allocated arrays are vulnerable to buffer
overflow attacks. Fortunately, allocating all arrays to the heap can mitigate such
attacks.

Stack buffer overflows are the most common form of security vulnerability
found in C programs. This vulnerability alone costs industry hundreds of
millions of dollars per year. For example, bind, the software responsible for
95% of the Domain Name System, was discovered to contain a buffer overflow
as recently as November, 2002. After the discovery of vulnerabilities in
infrastructure-critical software, many man-hours of software analysis,
reinstallation, and testing are required to fix it.

Moving stack allocated arrays to the heap accomplishes two things. First, it
disrupts the attack vectors of known stack buffer overflow exploits and all
future stack buffer overflow exploits. Second, it can disturb the heap memory
enough to eliminate known heap buffer overflow attack vectors also. Moving a
stack allocated array to the heap does not fix the bug that causes the buffer
overflow, it only prevents the overflow from providing the attacker with
elevated privileges, such as a command shell. This leads to less vulnerability in
the long run since it is very difficult, and in many cases impossible, for an
attacker to leverage a heap buffer overflow.

In C, a heap allocated buffer is actually a pointer to contiguous memory.
Pointers are not automatic variables; hence they require explicit memory
management by the programmer. The added complication of explicit memory
management often leads to bugs such as uninitialized pointers and memory
leaks. A program that transforms arrays into “pointers to arrays” can automate
memory management. Such a program should preserve the semantics of the
original program so that the transformation is transparent. In C, this is a problem
since arrays and pointers are not equivalent types.

Preserving the semantics of the program after the transformation allows
code to be developed using conventional programming practices (i.e., allocating
certain buffers on the stack). Furthermore, maintenance and debugging need not
be hampered by the prolific use of pointers. Rather, the code is automatically
transformed to use heap allocated “pointers to arrays” immediately prior to
compilation.

We have created a tool called Gemini that uses TXL rules to transform stack
allocated arrays into heap allocated “pointers to arrays” automatically. This
transformation preserves the semantics of the original program, allowing it to be
inserted into the end of the development process transparently and with a small
amount of run-time overhead.

Our work is related to two major areas of research. The first is software
security, specifically as it applies to buffer overflow vulnerabilities in code. The
second is the use of source code transformation for code re-engineering.

 8

Buffer overflows may occur when a fixed size memory allocation is used to
store a variable-size data entry. There are conflicts when the variable-size data
entry overruns the bounds of the fixed-size memory. These overflows are
typically exploited by entering a string that is larger than the buffer assigned to
hold it. If the return address (RA) is part of the overwritten run-time stack, an
attacker may execute arbitrary code, such as spawning a remote terminal
session.

Unlike the stack, the heap does not contain return addresses, making it
harder to change the program’s control flow.

Some security tools, such as Splint, perform static analysis to find code that
is likely to be vulnerable. Unlike our technique, however, they require
programmers to annotate their source code with constraints. Not all of the
existing source code analysis tools require code annotations, however.

StackGuard has been reasonably successful at reporting buffer overflows
immediately after they happen at run-time. Specifically, StackGuard inserts
code into the application at compile time and a ‘canary’ value just before the
return addresses on the run-time stack. When the function returns, the added
code checks if this canary value is still in place. If the canary value is no longer
present, a buffer overflow must have occurred. When this happens, the
application terminates with a notification.

A way to avoid the side effects of an exploited vulnerability is to disallow
the execution of the run-time stack. This prevents executable code, such as shell
instructions that may have been placed on the stack during a buffer overflow,
from being executed.

One way to get around a non-executable run-time stack is to perform a heap
overflow, followed by a stack overflow. The heap overflow is used to insert the
binary instructions for a command shell into the program's executable memory
space. A stack overflow is then used to modify the return address of the current
stack frame to point to the executable shell instructions in the heap.

Several languages have been created to perform source code transformation.
One such language is TXL.

TXL uses a grammar for the input text to be transformed and a set of rules
for performing the transformations. TXL can be thought of as a mixture of a
functional programming language and the Unix tools like lex and yacc. The
TXL grammar files are specified in extended Backus-Naur form. First, TXL
uses the specified grammar files to produce a scanner and parser for that
grammar. Second, it generates a parse tree from the input using the scanner and
parser. Finally, it applies the transformation rules to the tree.

In order to perform the transformation, one simplifying assumption is made.
The C source code being transformed must be compilable to an executable
binary. Recall that we are attempting to prevent stack allocated buffer
overflows. This is accomplished by transforming all stack allocated arrays into
heap allocated “pointers to arrays”. This transformation preserves the semantics
of array access and function argument declarations.

Array declarations within functions are the only arrays that must be
transformed. Arrays that are declared outside the scope of a function are

 9

allocated in the block storage segment and data segment of the executable, and
hence, they are not vulnerable to stack overflows. Similarly, pointers to arrays
and pointers to pointers, allocated with malloc, are on the heap and therefore
not vulnerable to stack-based buffer overflow attacks.

The following steps outline our transformation process.
1. Declaration Expansion. This step expands declarations that contain a list of

declarators. Expanding declarations simplifies the rest of the
transformations.

2. typedef Flattening. A typedef can either alias a type or an array of
types. Without doing the flattening, there could be many nested typedef
aliases, making it difficult to determine the correct “pointer to array”
declaration.

3. Declaration Transformation. This step transforms all local array declarations
to “pointer to array” declarations. An initialization function is created to
perform all memory allocation and initialization for the pointer to array. The
memory allocation and initialization cannot be performed within the body of
the function due to an ambiguity in the C grammar concerning declarations
and statements. Due to this ambiguity, it is impossible to guarantee that the
allocation and initialization of each transformed array will occur before any
statements reference the resulting pointer. To solve this problem, we
perform all of the work in a separate function. This function returns a
pointer to the prepared memory. The ISO C99 specification allows the
dimensions of locally defined arrays to be variable sized. After the
transformation, the dimensions of the resulting pointer will be referenced
several times during initialization. Simply copying the expression to several
areas of the source code would result in a failure to preserve the semantics
of the program. To solve this problem, the dimensions of the original array
are extracted and stored in a local integer variable. This placeholder is
substituted for the original expression during allocation and initialization of
the memory.

4. sizeof alias Declarations. This step inserts a new, unique array
declaration for each array declaration that was transformed. This new
declaration is the same as the original array declaration, except that it is not
initialized with data. The purpose of the unique declaration is to preserve the
semantics of sizeof. To be proper, the sizeof constant should only be
passed a type. However, many programmers will pass it a variable or an
expression. If a sizeof constant references the transformed array, it will
no longer evaluate to the same value as the original program since the type
has changed from array to pointer. In order to solve this special case, we
search through the scope of each transformed array declaration and replace
every reference to the original array, within a sizeof, with the name of the
new unique declaration.

5. Add free and Transform return and sizeof. This step adds the
appropriate calls to free, and transforms the return and sizeof
statements. The calls to free are necessary to preserve the behavior of the
original arrays, which are automatic variables. The transformation will insert

 10

the free calls at the end of every block where the original array would
have run out of scope. If the return statement references one of the
buffers, a segmentation fault may occur since the return statement will
attempt to dereference an invalid pointer. Hence, the expression that would
have been returned is stored in a local variable, and the contents of the
variable are returned instead.

6. Initialization Functions. This step adds the initialization functions to the end
of the source file to ensure that any necessary header files are included
above them, such as stdlib.h. Prototypes for the new functions are
inserted at the top of the source file so that the compiler can resolve the
symbol names of the functions.

 To demonstrate the effectiveness of our transformation, we show how the
transformation of source code that is amenable to a buffer overflow prevents the
exploit from occurring. Several transformed Linux programs have been tested to
demonstrate the expected efficiency of the transformed code.
 To show the amount of overhead that can be expected from using heap
allocated buffers in place of stack allocated arrays, we transformed several
Linux programs, each with varying degrees of size and complexity. If a program
came with a regression test suite, these tests were performed on both the
original code and the transformed code. The binaries were compiled without
optimizations in each case. The time increase was calculated in one of two
ways. If the program did not include a suite of regression tests, it was executed
fifty times with standard options. The result of this was compared to the same
tests being executed on the non-transformed binary. If the program did include a
suite of regression tests, the time increase was calculated by taking the
difference in fifty runs of the test suite of the transformed and non-transformed
binaries.
 The following steps constitute the pipeline for transforming C code. This
pipeline can be inserted directly into the build process of most open source
software.
1. Configure and build the program. This ensures that all necessary build files

are created and that the program holds the simplifying assumption
mentioned previously. From this step we obtain the names of the files that
need to be transformed.

2. Automatically modify the Makefile. Use a sed script to automatically
change the Makefile so that it produces pre-processed C code instead of
object files and binaries. Finally, update the modification time of each C file
using the touch program. This ensures that make will attempt to generate
object files and binaries in the next step.

3. Generate pre-processed C. Execute make again for each file that was
produced during the initial execution of make. This time the pre-processed
C code will be produced for each file. The debugging directives found in
the pre-processor output from GCC are removed since the TXL grammar
cannot parse them.

 11

4. Transform the program. Backup the original C source files and transform
each pre-processed C file, overwriting the original C source file with the
transformed output. After all of the files have been transformed, execute
make again to create the transformed program, then restore the original C
source files.

Conclusions
The FLFinder and Gemini tools in CoSAK represent a 2-pronged approach to
securing software systems.

The FLF hypothesis states that a relatively small percentage of functions
near a source of input are the most likely to contain security vulnerabilities. We
ran an experiment to validate this hypothesis. The results of this experiment
support our hypothesis. These results were tested against several open source
software systems not included in the experiment, as well as the OpenSSH server
daemon. The case study showed that the design decisions made by the
OpenSSH team concur with the results our FLF Finder produced. By using the
FLF Finder, code auditors can focus their attention on the most vulnerable
functions in the system. This would allow them to spend more of their time
searching for less obvious security flaws in systems, leading to more secure
applications.

The Gemini tool guarantees that current and future stack buffer overflow
attack vectors will fail when used against a transformed program, since the heap
does not contain return addresses.

Our solution does not fix the bug that causes a buffer overflow, but it does
mitigate the risk of such a bug by preventing the attacker from inserting
executable instructions, such as shell instructions, and overwriting the return
address to jump to those instructions. Furthermore, our technique preserves the
semantics of the program. This allows Gemini to be inserted into the regular
development process effortlessly.

The performance associated with using heap memory instead of stack
memory will increase with the amount of use the stack allocated buffers receive,
and by the number of times the functions containing the arrays are called. A
fortunate side effect of our technique is that by inserting more buffers onto the
heap, the heap memory becomes perturbed. This perturbation lends itself to
thwarting current and future heap buffer overflow attack vectors. Gemini is
available from our website at http://serg.cs.drexel.edu/gemini/.

Recommendations
The FLF work can be viewed as a foundation for future work on developing
more secure and fault tolerant software. Specifically, our long-term plan is to
provide mechanisms that will allow code to continue running even in the
presence of faults through isolation, policy relaxation and dynamic
reconfiguration. These capabilities will reduce the likelihood of successful

 12

denial of service attacks, and provide a better understanding of the software
failure or the techniques used by the attacker.

We plan to achieve these goals by defining the operational envelope of a
software system (i.e., the exact runtime requirements of each of its
components), and then creating a special runtime environment that ensures that
the program stays within its envelope. We also define an area outside of the
normal envelope, which we call the red zone. If the program enters the red
zone, we know that the behavior of the program is off nominal, but we do not
know the cause and the severity of the problem. Rather than terminating the
program, we place the runtime environment into an increased state of readiness
and allow the code to continue running. We also take actions to limit the
damage that the misbehaving program can cause. If the program attempts to
breach the red zone, it will be terminated by the runtime system.

The envelope of the system is defined as the set of conditions that remain
true throughout the lifetime of each of the system components. These conditions
are essentially the operational parameters of each component. If any of them are
violated, the component is operating outside of its design limits as a result of a
software problem, or an attack. We refer to these conditions, along with the
actions performed by the runtime system in response to the violated conditions,
as contracts. If, during the execution of the program, a contract is violated, the
runtime environment is provided with sufficient information about the program
(via the contracts) to determine what kind of action should be taken.

Using the CoSAK tools we can determine which functions in a system are
FLFs (i.e., Front Line Functions). Recall that an FLF is a function that is close
to a source of input from the external environment (e.g., a function that reads
from a file, socket, standard input). As it would be prohibitively expensive to
specify contracts for all of the function in a software system, we can use
heuristics such as the FLF concept to direct the attention of developers to the
most vulnerable functions from a reliability and security perspective.

After the FLFs have been identified we will use our profiling tools to
determine the nominal behavior of the application undergoing scrutiny.
Subsequently, we will document this nominal behavior using contracts written
the contract specification language. We will, finally, test these same systems
under the red zone-enabled runtime system to check that the faults and security
vulnerabilities no longer result in simple program terminations.

 13

References
[WCRE03] Dahn, C. and Mancoridis, S. Using Program Transformation to

Secure Against Buffer Overflows, In the IEEE Proceedings of the 2003
Working Conference in Reverse Engineering (WCRE'03), Victoria, BC,
Canada, 2003.

[ICSM03] DaCosta, D. and Dahn, C. and Mancoridis, S. and Prevelakis, V.
Characterizing the Security Vulnerability Likelihood of Software Functions,
by In the IEEE Proceedings of the 2003 International Conference on
Software Maintenance (ICSM'03), Amsterdam, The Netherlands,
September, 2003.

Glossary
CoSAK. The Code Security Analysis Kit is a collection of software tools to

help analyze C source code to (a) determine which of its functions are more
amenable to as security attack and (b) transform C programs so that they are
less susceptible to certain types of buffer overflow attacks.

FLF. Front Line Functions are the functions in a program that either perform
input/output or that interact closely with functions that do.

FLFfinder. The FLFfinder tool analyzes C programs and finds the program’s
FLFs.

Gemini. The Gemini tool transforms C code into semantically equivalent C
code that is not as susceptible to certain kinds of buffer overflow attacks.

